Opportunity and Challenges in Automotive Composites Industry

Presented TO
Lucintel Webinar

Presented By/Date
Dr. Sanjay Mazumdar, December 12, 2013
Table of Content

• **Executive Summary**

• **Automotive Materials Trends**

• **Current Problems in Automotive Industry**

• **Role of Composite Materials in Addressing those Problems**

• **Composite Materials Opportunity & Challenges**

• **About Speaker and Lucintel**
Executive Summary

• Global composite materials shipment in automotive industry was estimated at 3.6 billion lbs in 2012, and is likely to grow with a CAGR of 6% in next 6 years to reach 5.1 billion lbs in 2018
 • Composite materials accounted for ~1.1% of the global automotive materials market in 2012, an average consumption of ~45 lbs per vehicle
 • In 2012, Glass fiber composites dominated with 91.8% of the total composite materials in automotive industry, followed by natural fiber composites with 7.6% and carbon fiber composites with remaining 0.6%
• CAFÉ standards of 36.6 mpg by 2017 and 54.5 mpg by 2025, EU mandate of CO₂ emission to the level of 130 g/km by 2015 and 95g/km by 2020, passenger safety concern and parts consolidation are the major drivers of composite materials in the auto industry.
 • Improved powertrain, aerodynamic design, and increased use of lightweight materials are the major areas for improving fuel efficiency and mitigating CO2 emission.
 • Reduction in vehicle mass by 10% improves fuel efficiency by 6.5%
• Glass fiber composites is likely to remain aligned with its domain (exterior, interior, and under the hood) and gain more market share in coming years
 • Short fiber thermoplastic (SFT) is likely to remain leading type of glass composites in coming years, mainly driven by small complex shaped components in under the hood applications.
• Increasing use of natural fiber composites in major applications such as door panel and seat backs are expected to drive the market in coming years
• Carbon composites have excellent weight saving potential than other materials but price is very high (CF price is 10-12 times higher than that of HSS)
 • Ongoing R&D on mitigating carbon fiber cost and improving part fabrication cycle time to the desired level
 • In the last 10 years, CFRP gained momentum in monocoque application in sports, luxury and electric vehicles
 • Challenges with carbon composites: Low awareness towards benefits of carbon composites, high cost, high cycle time.
Table of Contents

• Executive Summary
• Automotive Materials Trends
• Current Problems in Automotive Industry
• Role of Composite Materials in Addressing those Problems
• Composite Materials Opportunity & Challenges
• About Speaker and Lucintel
Major Raw Materials and Its Applications in Automotive Industry

<table>
<thead>
<tr>
<th>Material</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steel (37.5%)</td>
<td>Chassis, Suspension arms, Door frame, Car hood hinge, Exhaust system, Bumper beams, A, B, C pillars</td>
</tr>
<tr>
<td>Aluminum (8.5%)</td>
<td>Wheels, Powertrain mount, Cylinder block / Engine, Auto transmission case, Suspension arms, Bumper beams, Intake manifolds</td>
</tr>
<tr>
<td>Iron (5.5%)</td>
<td>Engine blocks, Drum breaks, Front & rear calipers</td>
</tr>
<tr>
<td>Plastics (8.3%)</td>
<td>Dashboards, Bumpers, Seats, Interior & exterior trim, Electrical components, Under the bonnet components</td>
</tr>
<tr>
<td>High Strength Steel (16.8%)</td>
<td>Body in White, Chassis, B pillars, Front end structures, Bumper beams</td>
</tr>
<tr>
<td>Glass Composites (1%)</td>
<td>Instrument panel, Air intake manifold, Fender, Bumper, Roof, Door Module, Headlamp</td>
</tr>
<tr>
<td>Carbon Composites (0.007%)</td>
<td>Roof, Chassis / monocoque, Fender, Tailgate, Bumper</td>
</tr>
<tr>
<td>Others (22.4%)</td>
<td>Windshields, Mirrors, Sunroofs, Windows, Dashboards</td>
</tr>
</tbody>
</table>

% represents weight distribution of total vehicle weight
Raw Materials Used in Major Segments of Automotive Industry

<table>
<thead>
<tr>
<th>Structural (30%)</th>
<th>Power Train (22%)</th>
<th>Interior (23%)</th>
<th>Exterior (11%)</th>
<th>Electrical/Electronic & Others (14%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Chassis</td>
<td>• Engine</td>
<td>• Dash board</td>
<td>• Door modules</td>
<td>• Switches & Modules</td>
</tr>
<tr>
<td>• Body in White</td>
<td>• Suspension</td>
<td>• Floor</td>
<td>• Hood</td>
<td>• Wiring and lamps</td>
</tr>
<tr>
<td></td>
<td>• Transmission</td>
<td>• Door panel</td>
<td>• Trunk lid</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Steering</td>
<td>• Bumper</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Seat</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Steel</td>
<td>• Steel</td>
<td>• Plastics</td>
<td>• Steel</td>
<td>• Plastics</td>
</tr>
<tr>
<td>• HSS</td>
<td>• Aluminum</td>
<td>• Steel</td>
<td>• Aluminum</td>
<td>• Rubber</td>
</tr>
<tr>
<td>• Carbon Composites</td>
<td>• Magnesium</td>
<td>• Glass Composites</td>
<td>• Plastics</td>
<td>• Glass Composites</td>
</tr>
<tr>
<td></td>
<td>• Carbon Composites</td>
<td>• Carbon Composites</td>
<td>• Glass Composites</td>
<td>• Magnesium</td>
</tr>
<tr>
<td></td>
<td>• Titanium</td>
<td>• Magnesium</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

% represents weight distribution of total vehicle weight
High emphasis on greenhouse gas reduction, improvement in fuel efficiency, and safety concerns led to the evolution of advanced lightweight materials in the automotive industry.

To achieve lightweight construction without compensating properties, auto OEMs came up with solution of replacing conventional materials with HSS, AHSS, aluminum, magnesium, composites etc.
Material Trends in Automotive Industry

Automotive Material Mix from 1975 to 2010
(Average Vehicle Weight in lbs)

<table>
<thead>
<tr>
<th>Year</th>
<th>Steel</th>
<th>High Strength Steel</th>
<th>Iron</th>
<th>Aluminum</th>
<th>Other Metals</th>
<th>Plastics & Composites</th>
<th>Other Materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>1975</td>
<td>57.6%</td>
<td>15.0%</td>
<td>4.6%</td>
<td>14.0%</td>
<td>2.2%</td>
<td>3.0%</td>
<td>154</td>
</tr>
<tr>
<td>1995</td>
<td>46.8%</td>
<td>12.6%</td>
<td>6.3%</td>
<td>15.3%</td>
<td>3.8%</td>
<td>6.5%</td>
<td>199</td>
</tr>
<tr>
<td>2002</td>
<td>44.4%</td>
<td>11.3%</td>
<td>7.5%</td>
<td>16.1%</td>
<td>3.9%</td>
<td>7.8%</td>
<td>199</td>
</tr>
<tr>
<td>2010</td>
<td>40.8%</td>
<td>13.8%</td>
<td>5.9%</td>
<td>17.3%</td>
<td>4.3%</td>
<td>9.4%</td>
<td>154</td>
</tr>
</tbody>
</table>

Change in Materials Usage Per Vehicle from 1975 to 2010 (in lbs)

- Steel: -598 lbs
- High Strength Steel: 419 lbs
- Iron: -348 lbs
- Aluminum: 258 lbs
- Other Metals: 57 lbs
- Plastics & Composites: 199 lbs
- Other Materials: 154 lbs

Average Vehicle Weight in lbs:
- 1975: 3,900 lbs
- 1995: 3,694 lbs
- 2002: 3,924 lbs
- 2010: 4,040 lbs
Table of Contents

• Executive Summary
• Automotive Materials Trends
• Current Problems in Automotive Industry
• Role of Composite Materials in Addressing those Problems
• Composite Materials Opportunity & Challenges
• About Speaker and Lucintel
Current Major Problems Encountered By Automotive Industry

- **Demand of Fuel Efficient Vehicles:**
 - The Obama Administration’s CAFE (Corporate Average Fuel Efficiency) standards of 36.6 mpg by 2017 and 54.5 mpg by 2025. Currently, per vehicle fuel efficiency in US is about 28.9 mpg
 - CO$_2$ Emission Reduction: The European Union mandate of CO$_2$ emission to the level of 130 g/km by 2015 and 95g/km by 2020. Currently, per vehicle CO$_2$ emission in Europe is about 132.2 g/km

- **Increasing Passenger Safety Regulations:**
 - FMVSS (Federal Motor Vehicle Safety Standards and Regulations) 216 3.0 X GVW

- **Technology Innovation challenge:**
 - Develop new material products to reduce cost, improve efficiency and speed to market

- **Manufacturing Implementation Challenge:**
 - High cycle time of new materials

- **Product Complexity Challenge:**
 - Demand of more sophisticated cars with high functionality

- **Demand of Cars with Better Aesthetic Property

- **Supply Chain Challenge:**
 - Parts count consolidation, securing carbon fiber supply, etc.

Auto OEMs are ready to pay in the range of $15-$25 per kilogram saved depending on the vehicle segment
To Address the Current Problems, Powertrain is Likely to Experience Greatest Change in Materials, followed by Chassis and Exterior

<table>
<thead>
<tr>
<th>Segments</th>
<th>Expected Material Change</th>
<th>Currently Dominant Materials</th>
<th>Future Dominant Materials</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Low</td>
<td>Steel, Iron and Aluminum</td>
<td>Aluminum, HSS/AHSS</td>
</tr>
<tr>
<td>Powertrain</td>
<td>Moderate</td>
<td>Steel, HSS/AHSS</td>
<td>HSS/AHSS, Composites</td>
</tr>
<tr>
<td></td>
<td>High</td>
<td>Steel, Aluminum, Plastics, Composites</td>
<td>Steel, HSS, Aluminum Plastics, Composites</td>
</tr>
<tr>
<td>Chassis</td>
<td>Low</td>
<td>Steel, HSS/AHSS</td>
<td></td>
</tr>
<tr>
<td>Exterior</td>
<td>Moderate</td>
<td>Steel, Aluminum, Plastics, Composites</td>
<td></td>
</tr>
<tr>
<td>Interior</td>
<td>Low</td>
<td>Steel, Plastics, Composites</td>
<td>Plastics, Composites</td>
</tr>
</tbody>
</table>
Table of Contents

- Executive Summary
- Automotive Materials Trends
- Current Problems in Automotive Industry
- Role of Composite Materials in Addressing those Problems
- Composite Materials Opportunity & Challenges
- About Speaker and Lucintel
Role of Composite Materials in Addressing Automotive Industry Problems

Composite materials offer advantage of lightweight with higher strength. It is suitable in both structural and non-structural applications.

Structural (Chassis)

<table>
<thead>
<tr>
<th>Material</th>
<th>Relative Part Weight</th>
<th>Relative Part Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steel</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>AHSS</td>
<td>85%</td>
<td>135%</td>
</tr>
<tr>
<td>Aluminum</td>
<td>55%</td>
<td>200%</td>
</tr>
<tr>
<td>Carbon Composites</td>
<td>25%</td>
<td>800%</td>
</tr>
</tbody>
</table>

Non-Structural (Fender)

<table>
<thead>
<tr>
<th>Material</th>
<th>Relative Part Weight</th>
<th>Relative Part Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steel</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>AHSS</td>
<td>85%</td>
<td>130%</td>
</tr>
<tr>
<td>Plastics</td>
<td>80%</td>
<td>115%</td>
</tr>
<tr>
<td>Aluminum</td>
<td>55%</td>
<td>100%</td>
</tr>
<tr>
<td>Carbon Composites</td>
<td>40%</td>
<td>130%</td>
</tr>
</tbody>
</table>

Drivers

- **CAFÉ Requirement**
- **CO₂ Emission**
- **Safety**
Carbon Fiber Has Excellent Property than Other Materials but Price is Very High

![Chart showing the comparison of Carbon Fiber, S-Glass Fiber, Magnesium, Aluminum, HSS, Mild Steel, Iron, E-Glass Fiber in terms of Price per pound and Specific Strength. Carbon Fiber is the highest point in the chart, indicating it has the highest specific strength but one of the highest prices.]
Table of Contents

- **Executive Summary**
- **Automotive Materials Trends**
- **Current Problems in Automotive Industry**
- **Role of Composite Materials in Addressing those Problems**
- **Composite Materials Opportunity & Challenges**
- **About Speaker and Lucintel**
Global Annual Automotive Production is Likely to Reach 102 million Units in 2018. Average Vehicle Weight is Expected to Decline by 5%.

Note: Automotive includes Passenger Cars & Light Trucks.
Composite Materials are Estimated to Account for 1.3% of Global Automotive Materials Market in 2018 with a total Demand of 5.1 billion lbs

Share of Composite Materials in Global Automotive Materials Market

<table>
<thead>
<tr>
<th>Year</th>
<th>Composite Materials</th>
<th>Other Materials</th>
<th>Total Market</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>1.0%</td>
<td>99.0%</td>
<td>283 billion lbs</td>
</tr>
<tr>
<td>2012</td>
<td>1.1%</td>
<td>98.9%</td>
<td>323 billion lbs</td>
</tr>
<tr>
<td>2018</td>
<td>1.3%</td>
<td>98.7%</td>
<td>391 billion lbs</td>
</tr>
</tbody>
</table>

Trend and Forecast of Composite Materials Market In Automotive Industry in Million lbs

- **Glass Fiber Composites**
 - 2007: 2,712 million lbs
 - 2012: 3,300 million lbs
 - 2018: 4,659 million lbs

- **Carbon Fiber Composites**
 - 2007: 15 million lbs
 - 2012: 21 million lbs
 - 2018: 56 million lbs

- **Natural Fiber Composites**
 - 2007: 0 million lbs
 - 2012: 215 million lbs
 - 2018: 275 million lbs

Global Automotive Materials Market:
- 2007: 283 billion lbs
- 2012: 323 billion lbs
- 2018: 391 billion lbs
Major Applications of Various Types of Composite Materials

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Interior Headliner</td>
<td>Chassis/ Monocoque</td>
<td>Door Panels</td>
</tr>
<tr>
<td>Underbody System</td>
<td>Roof</td>
<td></td>
</tr>
<tr>
<td>Air Intake Manifold</td>
<td>Tailgate</td>
<td></td>
</tr>
<tr>
<td>Instrument Panel</td>
<td>Hood</td>
<td>Seat backs</td>
</tr>
<tr>
<td>Bumper Beam</td>
<td>Floor Panel</td>
<td></td>
</tr>
<tr>
<td>Air Cleaner Housing</td>
<td>Side Panels</td>
<td></td>
</tr>
<tr>
<td>Load Floor</td>
<td>Air Duct</td>
<td>Load Floor</td>
</tr>
<tr>
<td>Deck Lid</td>
<td>Trunk Lid</td>
<td></td>
</tr>
<tr>
<td>Airbag Housing</td>
<td>Fender</td>
<td></td>
</tr>
<tr>
<td>Front End Module</td>
<td>Rear Spoiler</td>
<td></td>
</tr>
<tr>
<td>Engine Cover</td>
<td>Bumper</td>
<td></td>
</tr>
</tbody>
</table>
1. Types of Glass Fiber Composites Used in Automotive Industry

Glass Fiber Composites

- **Thermoplastics**
 - Short Fiber Thermoplastics (SFT)
 - Long Fiber Reinforced Thermoplastics (LFRT)
 - Continuous Fiber Reinforced Thermoplastics (CFRTP)
 - Glass Mat Thermoplastics (GMT)

- **Thermosets**
 - Light Weight Reinforced Thermoplastics (LWRT)
 - Direct Long Fiber Thermoplastics (D LFT)
 - Sheet Molding Compound (SMC)
 - Bulk Molding Compound (BMC)
 - PU & Other Composites

Very High Usage

Very Low Usage
Carbon Fiber Potential: Significant Opportunity from High-End Cars to High-Volume Cars with the Production of Low-Cost Carbon Fiber

Global Automotive Production Forecast by Car Type in 2018

- **Super Cars**: 6,500 units
- **Super Luxury Cars**: 650,000 units
- **Luxury Cars**: 5 Million units
- **Other/Regular Cars**: 96 Million units
- **Total Global Automotive Production in 2018**: 102 Million units

Expected Demand of CF @ Current Price in 2018

<table>
<thead>
<tr>
<th>CF Usage in % of cars</th>
<th>Demand in MLbs</th>
<th>$M</th>
</tr>
</thead>
<tbody>
<tr>
<td>100%</td>
<td>1.43</td>
<td>17.2</td>
</tr>
<tr>
<td>10%</td>
<td>14.3</td>
<td>172.0</td>
</tr>
<tr>
<td>5%</td>
<td>1,056.0</td>
<td>12,672.0</td>
</tr>
<tr>
<td></td>
<td>1,182</td>
<td>14,181</td>
</tr>
</tbody>
</table>

Expected Demand of CF @ $5/lb in 2018

<table>
<thead>
<tr>
<th>CF Usage in % of cars</th>
<th>Demand in MLbs</th>
<th>$M</th>
</tr>
</thead>
<tbody>
<tr>
<td>100%</td>
<td>1.43</td>
<td>7.2</td>
</tr>
<tr>
<td>25%</td>
<td>35.8</td>
<td>179.0</td>
</tr>
<tr>
<td>25%</td>
<td>275.0</td>
<td>1,375.0</td>
</tr>
<tr>
<td>10%</td>
<td>2212.0</td>
<td>10,560.0</td>
</tr>
<tr>
<td></td>
<td>2424</td>
<td>12,121</td>
</tr>
</tbody>
</table>

Assumption: Per vehicle CF consumption is 220 lbs
3. Natural Fiber Composites: Dominance By Fiber Type, By Resin Type, and By Manufacturing Process

<table>
<thead>
<tr>
<th>By Fiber Type</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Flax</td>
<td></td>
</tr>
<tr>
<td>Kenaf</td>
<td></td>
</tr>
<tr>
<td>Hemp</td>
<td></td>
</tr>
<tr>
<td>Jute</td>
<td></td>
</tr>
<tr>
<td>Others</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>By Resin Type</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Polypropylene</td>
<td></td>
</tr>
<tr>
<td>Polyethylene</td>
<td></td>
</tr>
<tr>
<td>Others</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>By Manufacturing Process</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Compression Molding</td>
<td></td>
</tr>
<tr>
<td>Injection Molding</td>
<td></td>
</tr>
<tr>
<td>Others</td>
<td></td>
</tr>
<tr>
<td>Strategic Alliances between OEMs and Carbon Fiber Suppliers in Automotive Industry</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td></td>
</tr>
<tr>
<td>BMW</td>
<td>GM</td>
</tr>
<tr>
<td>SGL GROUP</td>
<td>Toho Tenax</td>
</tr>
</tbody>
</table>

Production of carbon fibers and carbon fiber fabrics for the upcoming BMW i-series electric vehicles for its passenger cell

To develop advanced carbon fiber thermoplastic composite technologies for high volume applications in GM cars, trucks, and crossovers

To develop, manufacturing and marketing of carbon fiber automotive components by utilizing High Cycle Resin Transfer Molding (RTM) developed by Toray

To develop cost-effective ways of using carbon fiber in high volume cars and trucks. By 2020, Ford aims to cut between 250 pounds and 750 pounds from its new cars and trucks

To develop use carbon fiber-based structural composite materials for high-volume serial automotive vehicles
Industry is putting efforts on alternative precursors and improvisation in manufacturing process to reach desired level of $5-$6/lbs carbon fiber precursor cost.

Current carbon fiber price is very high. Industry is looking for price in the range of $5-$6/lbs.

Major areas of carbon fiber cost reduction:

Alternative Precursors
- Commercial grade PAN
- Textile grade PAN
- Lignin based
- Polyolefin based

Cost Reduction Potential 20%-30%

Manufacturing Process
- Advanced Oxidative Stabilization
- MAP Carbonization
- Advanced Surface Treatment & Sizing
- Tow Splitting

Cost Reduction Potential 40%-60%

Low cost alternative carbon fiber expected future price $/lbs:

<table>
<thead>
<tr>
<th>Precursor Type</th>
<th>Future Price $/lbs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commercial Grade</td>
<td>7</td>
</tr>
<tr>
<td>Textile PAN</td>
<td>6</td>
</tr>
<tr>
<td>Lignin</td>
<td>6</td>
</tr>
<tr>
<td>Polyolefin</td>
<td>6</td>
</tr>
</tbody>
</table>
Cycle Time Challenge: Auto OEMs are Looking for Part Manufacturing Process with Cycle Time in the Range of One to Two Minutes

Current part fabrication process is good enough for low volume cars but for use in mass produced vehicle, there is need for process improvisation.

Target Part Cycle Time
- Carbon Fiber Part Cycle Time: One-Two Minute

Target Car Segment
- Sports cars
- Luxury cars
- Electric cars
- Regular cars

Area of Focus
- Technology improvement (HP RTM and CFRTP)
- Spreading carbon fiber tow
- Low viscose epoxy resin
Industry is Heavily Targeting Resin Transfer Molding (RTM) and CFRTP Processes for Fabricating Carbon Composites Parts

<table>
<thead>
<tr>
<th>Company</th>
<th>Processes</th>
<th>Supplier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daimler</td>
<td>Resin Transfer Molding (RTM)</td>
<td>Toray</td>
</tr>
<tr>
<td>BMW</td>
<td>RTM</td>
<td>SGL</td>
</tr>
<tr>
<td>Lamborghini</td>
<td>RTM, Forged Composite</td>
<td>Callaway Golf</td>
</tr>
<tr>
<td>Lexus</td>
<td>Prepreg Layup, RTM and Sheet Molding Compound</td>
<td>Toray</td>
</tr>
<tr>
<td>Ford</td>
<td>CFRTP</td>
<td>Dow</td>
</tr>
<tr>
<td>General Motors</td>
<td>CFRTP</td>
<td>Toho Tenax</td>
</tr>
<tr>
<td>McLaren</td>
<td>RTM</td>
<td>Carbo Tech</td>
</tr>
<tr>
<td>Aston Martin</td>
<td>Prepreg Layup</td>
<td>Gurit</td>
</tr>
</tbody>
</table>
Industry is on the Way of Achieving the Targeted Cycle Time

- **Prepreg layup**: 3000 hrs
- **Prepreg layup**: 400 hrs

Prepreg Layup: >90 minutes
Pressure Press: 17 minutes
Forged Composite: 8.5 minutes
HPRTM: 3-4 minutes
CFRTP (Toho Tenax): 1 minute

Carbon Fiber Demand in Automotive Industry (Million lbs)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>90</td>
<td>80</td>
<td>70</td>
<td>60</td>
<td>50</td>
<td>40</td>
<td>30</td>
<td>20</td>
<td>10</td>
</tr>
</tbody>
</table>

F1: 3000 hrs

- **RTM**
- **Others**

SLR: 400 hrs

- **RTM**
- **Others**

Lexus LFA: 8 hrs
BMW i3: 4 hrs

Prepreg Layup: 4000 hrs

Cycle Time (Hours)

- **1980**: 100 hrs
- **1985**: 90 hrs
- **1990**: 80 hrs
- **1995**: 70 hrs
- **2000**: 60 hrs
- **2005**: 50 hrs
- **2010**: 40 hrs
- **2015**: 30 hrs
- **2020**: 20 hrs
- **2025**: 10 hrs
Table of Contents

- Executive Summary
- Automotive Materials Trends
- Current Problems in Automotive Industry
- Role of Composite Materials in Addressing those Problems
- Composite Materials Opportunity & Challenges
- About Speaker and Lucintel
About Speaker

Sanjay Mazumdar, PhD. (CEO, Author, Thought Leader & Strategist)

• With a global consulting experience spanning over 14 years, Dr. Sanjay Mazumdar has been leading Lucintel since 1998 on projects as diverse as growth consulting, due diligence, value chain assessments and opportunity analysis providing actionable and cost-effective market intelligence, consulting and insights, to over 700 global customers. Some highlights:
 – Provided advisory services (M & A, market entry) to hundreds of clients.
 – Panelist at conferences with industry leaders such as Airbus, B/E Aerospace, Boeing, Core Molding, Ershigs, Owens Corning, and more.
 – Speaker at various conferences & published more than 25 papers.
 – Worked for General Motors in ultra-lightweight product development project and received 2 Record of Inventions.
 – Two Society of Plastics Engineers Awards and one DuPont Plunkett Award.
 – Ph.D. in Mechanical Engineering from Concordia University, Montreal and has additional training in Strategic Management from MIT, Boston.
 – Thought leadership on nature inspired innovations and launched video describing 5 innovation mega trends. Click to benefit from innovation ideas.
About Lucintel

Vision:
• Passion for data and insights. Empower companies develop better products and growth platform

History
• Founded in 1998
• Over 120 full time analysts / consultants. Global presence

Industry Leadership
• Over 1000 clients – Fortune 500 companies
• Fifteen years of proven management consulting & market research experience
• Panelists and key note speakers at leading conferences
• Subject matter expertise in composites, adhesives, chemicals, automotive, aerospace, energy and construction markets.
Lucintel Ensures Strategic Insights for the Right Market Entry

“Lucintel has its finger on the pulse of the market and drives deep Strategic Insight”

- Andy Schmidt, MacQuarie Partners, Managing Partner

- Lucintel has performed hundreds of consulting projects in the area of M & A, market entry strategy, opportunity screening, competitive benchmarking, value chain analysis, unmet needs analysis and others in a variety of markets for last 14 years.

• Lucintel with its profound business success knowledge, has driven strategic success across the value chain from material suppliers to component makers to OEM’s to Investors seeking sustainable winning strategies.

• Access to vital, hard to find insights through detailed primary and secondary research and analysis. Incomparable data accuracy and integrity

• Lucintel has over 30,000 contacts in its database for conducting primary research

• Lucintel has +500 market reports on various market segments:
 • No Learning Curve - Deep industry knowledge and insight. Quality, Accuracy & Depth
Over thousand clients around 70 countries value our service
with Project Teams with an Appropriate Mix between Technical and Business Expertise for Results that Drive the Bottom Line.

- Senior level consultants and analysts
- PhDs and MBAs
- Masters level engineers
- Scientists and Industry experts
- Past projects ranging from start up to multi-national Fortune 500 companies.
- Over 120 full time analysts / consultants
Lucintel has published +500 multi-client market reports & conducted hundreds of consulting projects across multiple markets

Market Reports
- Aerospace
- Transportation
- Marine
- Construction
- Renewable Energy
- Recreational
- Composite Materials

Consulting
- Strategic Growth Consulting
- Benchmarking
- Opportunity Screening
- Partner Search and Evaluation
- Due Diligence and M&A
- Market Entry Strategy
Lucintel’s Experience in Market & Strategic Analysis

• Lucintel has over thousand customers in 70 countries. It has worked with a variety of global companies, including (but not limited to) 3M, Audi, Carlyle, Credit Swiss, Cytec, DSM, Eastman, GE, Gurit, Sverica International, Sumitomo, etc. and has good experience in dealing with due diligence, M & A, market entry strategy, target screening and strategic growth consulting.

• Lucintel provides accurate data since we triangulate data using various means. During the project, Lucintel talks to suppliers, buyers and users to drive insights about the project. We have more than 30,000 contacts from more than 70 countries across different industries.

• Lucintel has performed a significant number of projects in market assessment, M & A, due diligence, investment thesis and winning strategy formulation. Below are comments from our satisfied clients in the area of M & A, market assessment, and Due Diligence, demonstrating our capabilities in management consulting and timely delivery.

 – “I was very happy with Lucintel’s work. It helped us in making a confident investment decision. They delivered the project in a timely manner.” – Dave Finley, Managing Director, Sverica International.

 – “Lucintel has its finger on the pulse of the market and drives deep strategic insights.”
 Andy Schmidt, Managing Partner, MacQuarie Partners
Thank You!